After 30 minutes rope a will be completely burned up and there will be 30 minutes of rope b left.
Burning rope problem 45 minutes.
He will burn one of the rope at both the ends and the second rope at one end.
Each rope burns in 60 minutes.
If you light one end of the rope it will take one hour to burn to the other end.
You have two ropes.
A logic brain teaser.
Each takes exactly 60 minutes to burn.
How can you measure 45 minutes.
You have 2 ropes.
Each rope burns in 60 minutes.
In addition each rope burns inconsistently.
It will burn up in 15 minutes.
Burning rope puzzle measure 45 minutes.
Light both ends of rope a and one end of rope b.
Light the other end of rope b.
He can t cut the one rope in half because the ropes are non homogeneous and he can t be sure how long it will burn.
Each rope will take exactly 1 hour to burn all the way through.
Each takes exactly 60 minutes to burn.
Light the other end of rope b.
How can you measure a period of 45 minutes.
Burning rope problem a man has two ropes of varying thickness those two ropes are not identical they aren t the same density nor the same length nor the same width.
Total time elapsed since starting the ropes on fire.
Each rope has the following property.
How do you measure out exactly 45 minutes.
Burn rope 1 from both end and at same time burn rope 2 from one end.
Total time elapsed since starting.
When rope 1 finishes burning it will be exactly 30 minutes.
This burning rope problem is a classic logic puzzle.
He actually wants to measure 45 mins.
You can light one or both ropes at one or both ends at the same time.
They are made of different material so even though they take the same amount of time to burn they burn at separate rates.
After 30 minutes rope a will be completely burned up and there will be 30 minutes of rope b left.
How can he measure 45 mins using only these two ropes.
They are made of different material so even though they take the same amount of time to burn they burn at separate rates.
You have two ropes coated in an oil to help them burn.
They don t necessarily burn at a uniform rate.
This burning rope problem is a classic logic puzzle.
You have two ropes and a lighter.
How can you measure 45 minutes.
However the ropes do not burn at constant rates there are spots.
Light up three out of four ends of the two wires.